

TICO® LF/PA - Low Frequency Mounting Pad Datasheet

Product Code: RC1156

Product Description

TICO® LF/PA - Low Frequency Mounting Pad is crafted from moulded synthetic rubber and features a bonded-sandwich construction. The centre stratum is synthetic elastomer, precision moulded with a fluted pattern developed for optimum absorption across a specific load range. The top and bottom strata are made from rubber bonded cork to provide high friction-bearing surfaces.

Technical Specification

Property	TICO® LF/PA/10	TICO® LF/PA/80
Maximum Recommended Static Stress	0.07 MN/m²	0.7 MN/m²
Breakdown	In excess of three times maximum working stress	
Hardness (IRHD)	40 ± 3	40 ± 3
Density (Typical)	1050kg/m³	1050kg/m³
Temperature Range	-30°C to +70°C	-30°C to +70°C

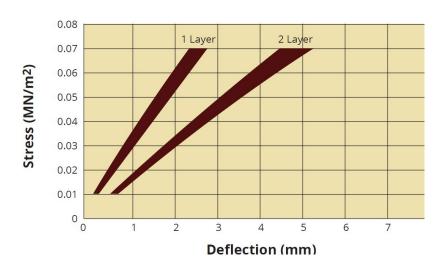
Dimensions

Property	TICO® LF/PA/10	TICO® LF/PA/80
Standard Thickness	25mm	32mm
Standard Size	150mm x 150mm	150mm x 150mm
Maximum Size	600mm x 150mm	600mm x 150mm

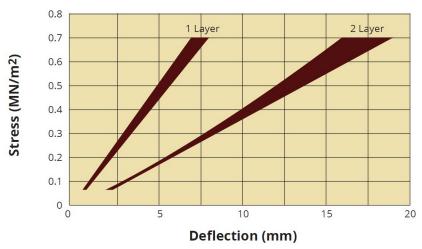
Experts in **Rubber**

Manufacturers · Designers · Distributors

Static Deflection


To use the graph:

1. Calculate stress on pads in MN/m² using formula:

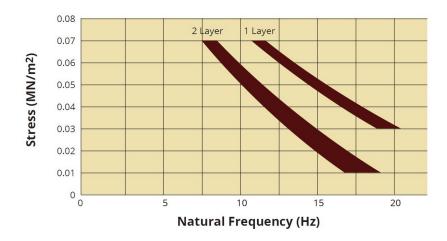

Stress in MN/m² = (weight of machine in kg x 9.81
$$\div$$
 1,000,000
Area of pad in m²

2. Project horizontal line from calculated stress to intercept desired thickness. Read deflection off horizontal axis of graph.

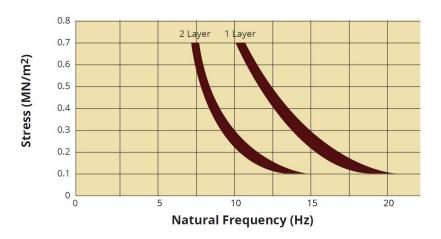
LF/PA/10

LF/PA/80

Experts in Rubber


Manufacturers · Designers · Distributors

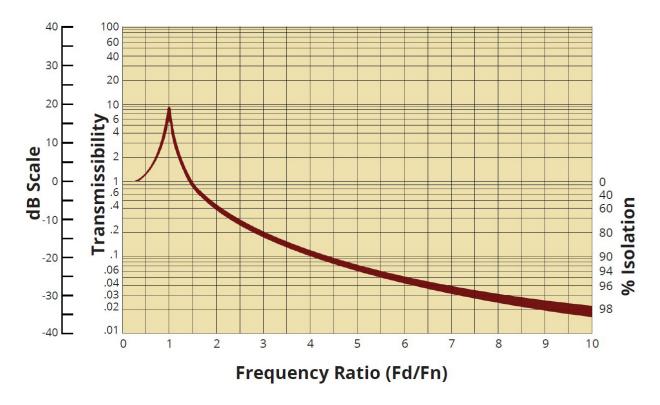
Natural Frequency


To use graph:

- 1. Calculate stress on pads MN/m² (see page 2 for formula).
- 2. Read from vertical axis across to desired pad thickness.
- 3. Read natural frequency (fn) off horizontal axis.

LF/PA/10

LF/PA/80



Experts in **Rubber**

Manufacturers · Designers · Distributors

Isolation Frequency

- 1. Ascertain disturbing frequency of plant to be isolated (fd).
- 2. Calculate frequency ratio fd/fn.
- 3. From horizontal axis project a line up to curve of graph and read off isolation efficiency from right-hand side vertical axis.

Note: Installation should be arranged so that the frequency ratio does not fall between 0.5 and 2.

